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Abstract

We investigate whether online vacancies for jobs requiring Artificial Intel-
ligence (AI) skills grow more slowly in U.S. locations farther from AI “inno-
vation hotspots.” To do so, we create a dataset of AI publications (research
papers and patents) and define hotspots based on locations’ cumulative num-
ber of AI publications by 2006. The source for job vacancies is online job
advertisements scraped by Burning Glass Technologies from 2007–2019. With
a hotspot defined as a commuting zone with at least 1000 AI publications, a
10% greater distance from a hotspot (about a standard deviation) reduces a
commuting zone’s growth in AI jobs’ share of job advertisements by 3–5% of
median growth. Distance from a hotspot plays no role if a commuting zone
is itself a hotspot, but distance is a greater barrier the greater a hotspot’s
share of publications that are patents rather than research papers. Analysis
by occupation, industry and AI type suggests that the type of job posting for
which distance is a barrier is jobs adapting AI for use in a new setting. We do
not find convincing evidence for an effect of distance on the adoption of AI,
perhaps because there is as yet little adoption.



The extent to which geographic distance is a barrier to technological knowledge trans-

fer is of interest to governments of countries distant from centers of knowledge creation

or technology production; to entrepreneurs deciding where to locate a new firm that will

need to remain abreast of technological developments; and to national or local policy–

makers seeking to influence the decisions of such entrepreneurs. These agents may value

knowledge transfer as an input to further knowledge creation, or as a prerequisite for the

adoption of new technology practices. In this paper, we provide insight into a new aspect

of knowledge transfer, by examining the geography of U.S. firms’ adaptation and adoption

of Artificial Intelligence (AI) in response to AI innovation.

The importance of distance for the diffusion of inventive and research activity has

received considerable attention. Theoretically, distance could reduce inventors’ and re-

searchers’ ability to source knowledge or their ability to collaborate, by reducing the

probability of serendipitous meetings or raising the cost of planned meetings.The reduced

probability of serendipitous meetings could reduce the probability of collaborations being

initiated, while the higher cost of planned meetings could make sustaining a collaboration

more expensive. 1 Because knowledge has been shown to be transfered when an inventor

moves to a new firm, distance could also be a barrier to knowledge transfer because it is

a barrier to migration.2

Such considerations may seem unimportant in the face of technological progress in-

cluding the telephone, modern means of transportation, email, texting, the worldwide

web and video conferencing. These are likely to have reduced the role of distance in both

knowledge sourcing and especially sustaining collaboration, though they may have had

less impact on initiations of collaborations. Indeed, initiations of collaborations appear

sensitive to even small changes in distance: Catalini (2007) finds that existing collabora-

tions persisted after the 1997–2014 shuffling of research laboratory locations on a Paris

1 Esposito (2023); Catalini (2017). The World Intellectual Property Organization (2019) discusses the
creation of contacts and networks in an international context.

2 Empirical evidence for the importance of inventors’ changing firm has been found for within–country
firm to firm moves by Agrawal, Cockburn and McHale (2006); Almeida and Kogut (1999); Rahko (2017);
and Sonmez (2017). For international moves see Kerr (2008); Briggs (2016); and Bahar, Choudhury and
Rapoport (2020).
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university campus, while collaboration between newly proximate laboratories increased

greatly. Berger and Prawitz (2023) show the construction of the Swedish rail network

spurred invention by spurring collaboration between newly connected rural areas. A

more general empirical literature supports the hypothesis that distance is a barrier to the

diffusion of inventive activity to potential inventors.3

A related literature examines how the adoption of technology, often across countries,

is affected by the proximity of other adopters. One hypothesis is that it is advantageous

for a potential adopter of a technology to be proximate to an earlier adopter because this

makes adoption less risky: the later adopter could discuss adoption with the early adopter,

observe the early adopter’s methods and outcomes, and poach the early adopter’s expe-

rienced workers. Another hypothesis is that firms could learn about distant technology

through trade or their region’s receiving direct investment, and distance is a barrier to

trade and direct investment. The empirical adoption literature confirmed that distance

is a barrier to the diffusion of adoption4, but finds the barrier to be lower for multiestab-

lishment or multinational firms, which presumably have internal communication channels

and coordination.5

Our paper seeks to examine whether distance constitutes a barrier between technology

production (innovation) and technology adoption or adaptation, focusing on the technol-

ogy of artifical intelligence (AI). We choose to examine AI in part because the rapid

growth in AI research papers and patents began only recently, allowing an examination of

its geographic diffusion from early in the process. It is also of particular interest because it

is potentially important for future economic growth.6 Because AI is still immature, with

few off–the–shelf applications yet available, we seek evidence for the effect of distance on

3 For analysis of patents, see Henderson, Jaffe and Trajtenberg (1991, 2005); Keller (2004); Peri (2005)
Blit and Packalen (2018); Ganguli, Lin and Reynolds (2019); and Bernard, Moxnes and Saito (2020).
Thompson and Fox–Kean (2005) have a contrary view. Singh and Marx (2013) find political borders,
including those within countries, to be larger barriers than distance itself. For analysis of country R&D
as a proxy for innovation, see Keller (2002) and papers in Keller’s (2004) survey.

4 Little and Triest (1996); Comin, Dmitriev and Rossi–Hansberg (2012). See also papers on trade and
innovation cited in Akcigit and Melitz (2021)

5 Branstetter, Blennon and Jensen (2018).
6 Aghion, Jones and Jones (2017); Goldfarb, Taska and Teodoridis (2019).
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the adaptation of AI to a new environment, such as a new industry, in addition to the

effect on adoption.

Prior theoretical and empirical work suggest that an industry adopting an innova-

tion tends to be either established in the location of the innovation, or, in the case of a

mature industry, moves to the location of the innovation (Duranton 2007; Kerr (2010);

Zucker, Darby and Brewer 1998). However, the role of distance has rarely been studied

explicitly. The only existing analysis of geographic links between knowledge creation or

technology development and technology adoption is by Bloom et al. (2021), who are also

the first to analyze the geographic diffusion of AI. They consider a group of 29 “disrup-

tive” technologies including AI, showing they emerge through patents in concentrated

“pioneer locations”, before spreading geographically as measured by convergence across

locations in the share of job advertisements involving the technology group. Bloom et

al. do not, however, consider explicitly the link between distance from a pioneer loca-

tion and the growth of the technologies, nor do they consider new knowledge emerging

as scientific papers rather than patents. Thus, the contributions of our paper are a new

question, its application to a new technology, and new data linking AI publications and

job advertisements.7

To measure innovation, we create a dataset of AI publications, using Microsoft Aca-

demic Graph (MAG) to count journal articles, conference proceedings and patents identi-

fied in MAG as relevant to “deep learning”. We measure AI adaptation or adoption using

job vacancy information from U.S. online job advertisements scraped by Burning Glass

Technologies from 2007–2019. We divide the United States into 741 commuting zones

and using them as a panel after having aggregated the variables to this level.

Our first approach to the question involves designating as innovation hotspots those

commuting zones whose cumulative AI publications before our study period were over a

7 Other related papers are by Andersson, Quigley and Wilhemsson (2009), and Dittmar and Meisenzahl
(2022), who look at the impact of universities on local innovation. Acemoğlu, Autor, Hazell and Restrepo
(2021) examine the growth of AI job advertisements in the Burning Glass Technologies data and Babina
et al. (forthcoming) combine resume information with Burning Glass data, but these papers do not
consider geography.
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certain threshold. Our outcome of interest is subsequent growth in AI job advertisements

as a share of all job advertisements, with the key covariate being the (log) distance to

the closest innovation hotspot. We assume that companies are able to fill the vacancies

they post, and interpret a negative effect of distance as a barrier to hiring AI workers.

Distance could be a barrier to the hiring of AI workers by companies already operating in

distant commuting zones, or to the establishment in distant commuting zones of companies

anticipating requiring AI workers. That U.S. firms mentioning AI on their website tend

to be young (51% less than five years old) suggests the latter mechanism is likely to be

important.8

A null effect of distance could either mean that the barrier is so high that commuting

zones have no effect on one another, or that there is no barrier. Our second identification

strategy defines the key distance covariate as the (log) radius of the circle around the com-

muting zone which encloses more than a certain threshold of cumulative AI publications

before our study period (exclusive of the commuting zone’s own publications). This is

essentially a variant of the first identification strategy incorporating more AI publication

information.

We find that as the hotspot threshold surpasses 300 publications, a threshold met

by 11% of commuting zones, a hotspot’s AI publications affect other commuting zones’

AI vacancies. At a threshold of 1000 publications, approximately where the effect size

is largest, a 10% greater distance from a hotspot (about a standard deviation) reduces

a commuting zone’s growth in AI jobs’ share of job advertisements by 2–3% of median

growth. Our findings are robust to the second approach using the (log) radius of the

circle enclosing a given number of AI publications and to measuring job advertisements

cumulatively over time instead of contemporaneously.

On the other hand, we find that distance to a hotspot with 2000 or more publications

has only a small negative effect on AI job postings. The AI inventions and development

in these thirteen large hotspots may be sufficiently prominent that even distant commut-

ing zones have access to their benefits. The prominence could be due to a mixture of

8 Dernis et al. (2023). See also Acemoğlu et al. (2022) for related statistics.

4



publications in more prominent journals; non–hotspot researchers, managers or owners

monitoring the activity of large hotspot firms and researchers regardless of how the re-

sults are disseminated; media exposure; and large hotspots having geographically wider

personal networks as the numerous students of AI researchers and developers fan out to

take jobs.

The effect of distance to the closest hotspot is greatly reduced when the number of

local pre–2007 AI publications becomes large: for firms in a commuting zone that is itself

an innovation hotspot, the distance to the nearest other hotspot is almost irrelevant:

with sufficient local AI, the marginal contribution of AI innovation elsewhere falls to

zero. We also find that distance is a greater barrier the greater a hotspot’s share of

publications that are patents rather than research papers (journal articles and conference

proceedings). Nevertheless, distance represents a barrier even when the hotspot has a low

share of patents among the publications.

To distinguish among job vacancies reflecting innovation, adaptation and innovation,

we perform analysis by type of AI and by occupation and industry. The evidence fits most

closely with the hypothesis that distance is a barrier to the adaptation of AI for use in a

new setting, rather than to adoption of AI. Distance is a barrier to the posting of jobs for

AI computer and mathematical occupation workers, who could be engaged in innovation

or adaptation, but more specifically of developers of AI software applications, likely to

be engaged in adapting AI for adoption. Further, while there is suggestive evidence that

distance is a barrier to searching for AI workers in finance and insurance industries, which

could reflect adaptation or adoption, it is no barrier to searching for AI workers in business

and insurance (or management) occupations, who would be adopting AI.

1 Data

We have created our own database of AI publications and patents, and merge it with

Burning Glass Technologies job advertisement information.
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1.1 AI publications database and designation of innovation hotspots

Using the January 2020 release of Microsoft Academic Graph (Sinha et al. 2015), we

have compiled a database of journal articles, conference proceedings and patents related

to machine learning and neural networks, the areas that have led to a surge in commercial

applications. These publications were selected using the coding with one or more fields of

study from Shen et al.’s (2018) “hierarchical concept structure”, which is based on keyword

and text analysis of publications and the graph structure of the database’s authorship and

citation linkages. We obtain 1.14 million such publications worldwide, with an average

of just over 3 authors per paper. 99% of the publications in this sample had 10 authors

or fewer, though the distribution of authors-per-publication has a very long tail. The

authors of these publications work at firms and research institutes as well as universities.

Where possible, the location of each author was carefully geo-coded using information

on their organizational affiliation at the time of publication. Our geo-coding was based

on the text string containing the name of that author’s organizational affiliation, for

example “Boston University, Boston, MA USA”. Of the 3.46 million publication-author

pairs worldwide, 1.12 million could not be geo-coded: in the great majority of these cases,

this was because we were unable to identify even the country of the author’s organizational

affiliation because this text field was missing, corrupted, or was an ambiguous acronym.9

But our focus is on publications attributable to U.S. locations, and we are confident

that our exhaustive search accurately captures the great majority of these in this set of

AI publications. Of the 442,563 publication-author pairs which we identified as having

a U.S. location, less than 0.5% could not be further geo-coded to the city-state level

and were excluded from further consideration. Among the pairs in U.S. locations, 2.7%

represent patents rather than journal articles or conference proceedings.

Using the city and state of each author, we obtain the county FIPS code, and then

9 We used all available information, including the apparent language or script of the text string (e.g.
Cyrillic, Katakana), the top level domain of any email address or URL provided, the international calling
code of any phone number, the linkage between the internal affiliationid and the GRID identifier developed
by Microsoft, hand lookups using web searches, and (as a default) the geo-coding returned by the Google
Maps API.
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aggregate papers and patents into 741 commuting zones for each year.10 Each author is

thus the source of potential spillovers, whether in the same or a different location from his

or her co-authors. While we refer to the commuting zones’ publications, these are really

author–publication pairs.

We use these data to designate certain commuting zones as innovation hotspots, based

on the cumulative number of AI papers+patents (a sum we refer to as publications)

through 2006, the year before our study period. We assume that it is the total rather

than per capita number of publications that matter for spillovers to other locations, and

experiment with different absolute thresholds.

1.2 Burning Glass Technologies job advertisements

Burning Glass Technologies is an employment analytics and labor market information firm

which since 2007 has daily scraped the web’s online U.S. job postings and produces files

with duplicates eliminated standardized information for each advertisement. Its database

has been widely used by labor economists (e.g. Deming and Kahn 2018). Hershbein and

Kahn (2018) show that aggregate vacancy trends are consistent with those in administra-

tive data, and while postings for college graduates and for industries with skilled workers

are overrepresented (Carnevale, Jayasundera and Repnikov 2014), this is not a problem

for our study. Unfortunately, there are no data for 2008 and 2009, which influences our es-

timation strategy, so our sample period is February–December 2007, all years and months

from 2010–2018, and January–July 2019. Data collection in 2007 differs somewhat from

that in later years, but we include 2007 because it is desirable to have data from the

period when AI job advertisements were very uncommon.11

Of the variables available for each of the 200 million job advertisements, we use the

location, the NAICS 2–digit industry code, the standard occupation classification code,

10 We match cities to counties using the “Pro” file provided at https://simplemaps.com/data/us-cities,
accessed 18 February 2022. Of 128,692 publications, 34 have missing city; 770 have a city not in the
simplemaps database, of which 750 are manually assigned a county, in some cases using wikipedia.

11 We elected to concentrate on the United States only, because data for other countries (UK, Canada
and Singapore) are available only from 2012 onwards.
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classifications of keywords for required skills, and the employer name. In the raw data,

24% of job advertisements are missing industry, but we are able to reduce this share to

16% by replacing missing values with the modal industry code available for the same firm

in the same year, when available. We harmonize differing versions of employer name.

We designate job advertisements as being IT job advertisements if the advertisement

requires a skill other than Microsoft Office that is coded as “Information Technology” in

the Skill Cluster Family (most aggregate) field (and the advertisement is not also an AI

advertisement, though there is almost no overlap).

A missing value for the employer name means the advertisement is posted by an

employment agency 12 Burning Glass apparently also aims to have the industry code reflect

the industry of the ultimate employer, since otherwise the NAICS 2–digit code would

always be 56 (the category including employment services) for job advertisements with

missing employer name, which is not the case. Rather, since Burning Glass Technologies

infers employer industry principally from the employer name, almost half of vacancies

(44%) with a missing firm name are also missing industry. Some employment agency

names do appear, presumably because employment agencies do hire some workers.

We designate a job advertisement as being an AI job advertisement if the required

skills include the general Burning Glass keywords Artificial Intelligence, Machine Learn-

ing, Image Processing or any of the more specific keywords listed in Appendix Table 1;

this is the set of terms used by Alekseeva et al. (2021). An apparently simple way to

distinguish advertisements for an AI innovator from those for an AI adopter is to di-

vide the specific AI skills required in the job advertisements into categories reflecting the

distinction. However, this has proved difficult to do, not least because a large share of

advertisements requiring AI skills simply require either “Artificial Intelligence” or “Ma-

chine Learning” (ML) skills, with no further detail specified. The detailed skills, for their

part, are difficult to categorize. We therefore examine three mutually exclusive categories:

unspecified AI skills only (nothing beyond AI or ML mentioned); image processing (fre-

quently requested for health occupations), whether requested along with other AI skills

12 Burning Glass Technologies, personal communication.
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or not; and the remaining AI skills or skill combinations.13

We aggregate the total job advertisements, AI job advertisements and IT job ad-

vertisements to the commuting zone–year level using the county of the employer, and

calculate the share of the commuting zone’s total advertisements which are AI or IT ad-

vertisements in each year. Finally, we merge the data with the publication data. Our

dependent variable is based on the share of advertisements that require AI skills, so that

small commuting zones may experience as large an effect of distance as large commuting

zones.14

1.3 Distance calculations

The files provided by Burning Glass provide the latitude and longitude of the employer,

and we calculate the location of the commuting zone by averaging the latitude and lon-

gitude of all job advertisements over all years. Then we calculate the distances between

commuting zones using Stata command geodist (based on Vicenty’s reference ellipsoid for-

mula). For each commuting zone, we average the distances to all other commuting zones

to compute the node centrality, and we calculate the distance to the nearest commuting

zone.

To construct the independent variable we emphasize, we combine the distances with

the hotspot information to compute the distance to the closest innovation hotspot for

each commuting zone. Unless there is only one hotspot (a case we do not consider), even

hotspots have a closest hotspot. For use with this independent variable, we also compute

the distance to the closest populous commuting zone for each commuting zone, with the

definition of a populous commuting zone depending on the definition of hotspot being

used: if a given AI publication threshold yields h commuting zones defined as hotspots,

we define a populous commuting zone as one of the h most populous commuting zones. We

also present results using a different independent variable that does not use the concept of

13 See Burning Glass Technologies (2019) for a description of how required skills are codified.
14 For a small proportion of postings, the county is missing, but as state is never missing, missing

counties are assigned randomly within the state.
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a hotspot. For each commuting zone, we calculate the radius of the circle around it which

encompasses a given number of AI publications; we calculate this at the commuting zone

level.

2 Methods

We choose as our primary dependent variable long differences (length k) in AI jobs’ share

of job advertisements in commuting zone c whose closest innovation hotspot is commuting

zone h: ∆kAIscht = AI job ads
All job ads cht

− AI job ads
All job ads ch t−k

. We use shares to avoid having the

variation in AI reflect variation in commuting zone population. We use long differences

because at a given point in time, a large share of commuting zones have no AI job

advertisements and many have only one or two, meaning short differences in shares would

often reflect very small absolute changes in the number of AI advertisements. Because

the number of job advertisements is often also small in such commuting zones, there is

a considerable number of outliers in the change in AI share, a problem mitigated with

longer differences. We avoid using fixed effects (including Poisson fixed effects), which

might use short–run variation for identification, and which would also be problematic

due to the absence of 2008 and 2009 data. We also have investigated changes in the

probability of a commuting zone having any AI job advertisement. However, we find that

the standard errors on the coefficient of interest in these regressions are large enough to

prohibit inference, and we do not report these results.

We therefore estimate this equation in our first identification approach, with our key
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dependent variable, distance to the nearest innovation hotspot, defined DHot
c :

∆kAIscht =α + σlog(DHot
c )

+ β1AI Papers > 0c,t∗ + β2AI Papersct∗ + β3(AI Papersct∗)2

+ β4AI Patents > 0c,t∗ + β5AI Patentsct∗

+ γ1log(All job adsct∗) + γ2log(Popct∗) + γ3IT
s
ct∗

+ φ1log(D̄c) + φ2log(DPop
c ) + φ3log(Dmin

c )

+ θ1log(AI PubsHot
ht∗ ) + θ2log(PopHot

ht∗ )

+ ρ1∆
kAI Papersct + ρ2∆

kAI Patentsc t−2 + ρ3∆
klog(All job adsct) + ρ4∆

kIT s
ct

+ ηt + ∆kεcht,

where t∗ indicates a variable measured in 2007 or before (through 2006 in the case of AI

publications) and that is therefore time–invariant. The covariate of interest is σ. If σ is

negative, distance constitutes a barrier to the posting of AI job vacancies. If it is zero,

however, this could reflect either that distance is no barrier, or that distance is such a

barrier that only innovation in the commuting zone affects a commuting zone’s AI job

vacancies. The conceptual randomization is the distribution of pre–2007 AI publications

among commuting zones.

The first set of additional controls capturesthe commuting zone’s own AI innovation

prior to 2007: a quadratic in the commuting zone’s own cumulative AI papers through

2006 (quadratic rather than log due to the presence of zeros), AI Papersct∗ ; a dummy for

any such paper, AI Papers > 0ct∗ ; a linear term in the commuting zone’s own cumulative

AI patents through 2006, AI Patentsct∗ ; and a dummy for any such patent, AI Patents >

0c,t∗ . The next set of controls are for other initial conditions: the initial number of job

advertisements of all types, log(All job adsc,2007), and the population in the most recent

pre–study period census, log(Popc,2000), despite the fact that the dependent variable is

scaled, to control for variation in the size of online job boards relative to population. To

avoid the AI publication covariates picking up variation in non–AI IT, we control for IT’s

share of job advertisements in 2007 (IT s
c,2007).

The third set of controls contains other distances that could be confounders of distance
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to the closest hotspot: for node centrality D̄c (the average distance to all other commuting

zones), for which network theory would predict a positive effect and the distance to the

closest commuting zone Dmin
c . To ensure that σ is not capturing any general disadvantage

due to distance from a large commuting zone as well as the disadvantage due to distance

from an innovation hotspot, we control for the distance to the nearest large commuting

zone (D̄Pop
c ): these two distances are very positively correlated. We also control for

the log of the number of pre–2007 publications (papers+patents) in the closest hotspot,

log(AI PubsHot
ht∗ ), and the 2000 population in the closest hotspot, log(PopHot

ht∗ ).15

Finally, we control for contemporaneous changes in some key variables: the number of

the commuting zone’s own AI papers and patents, ∆kAI Papersct and ∆kAI Patentsc t−2;

log job advertisements, ∆klog(All job adsct)); and the change in the IT job advertisements’

share in all advertisements, ∆kIT s
ct. This could constitute overcontrolling: some or all of

these could be the result of growth in AI job advertisements, rather than the cause, and

their inclusion could bias σ̂ upward toward zero. On the other hand, some of the AI

job vacancy growth reflects innovation, so for regressions considering all types of AI but

omitting these covariates, σ̂ will be biased down (the classic spatial spillover problem

described in Gibbons and Overman 2012). Furthermore, even if we are able to measure

growth in AI job advertisements reflecting adaptation and adoption only, it is plausible

that there is a positive correlation between unobserved factors affecting innovation and

adaptation/adoption, a further reason σ̂ is likely to be biased down in such specifications

(distance to innovation will be negatively correlated with the error term including unob-

served influences on adaptation/adoption). Controlling for changes in the number of the

commuting zone’s own AI papers and patents (for example) could reduce the downward

bias stemming from both issues: this would control for the part of the growth in the

dependent variable due to growth in innovation, and would proxy for unobserved deter-

minants of growth in adoption. Our preferred specification is therefore the one including

15 The last two covariates vary only by h. Were we interested in their standard errors we would have
to adjust for this low variation, but since we are not, we do not.
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all the covariates in the equation above.16

It seems likely that distance to AI publication hotspots is irrelevant for commuting

zones that themselves generate a large number of AI publications, but important for

commuting zones which themselves have few AI publications. To test this hypothesis, in

some specifications we include controls for the interactions of log distance to a hotspot

with all the covariates involving pre–2007 AI publications.

Our second approach involves replacing log(DHot
c ) with the radius of the circle enclos-

ing N or more pre–2007 AI publications log(RN
c ), exclusive of the commuting zone’s own

AI publications. We also replace the population control log(Popc,t∗) with the log of the

2000 population within the circle with radius log(PopRN
c ), exclusive of the commuting

zone’s own population. In addition, we control for the (log) number of AI publications

within the circle, since this varies due to the lumpy geographic nature of AI publications

at the commuting zone level. This approach is not so much a different identification

strategy as a specification using the pre–2007 AI publications data more fully and which

allows for population to be controlled in a way free from from collinearity problems.17

Due to the significant number of zeros in the dependent variable despite the focus on

long differences, we estimate the equation using median regression. This also downweights

the large outliers in the outcome.18 OLS point estimates of σ are somewhat more negative

than median regression estimates, with larger standard errors. We report three–year

differences, the only difference length to use all the years’ data except 2007 as the first

year of the difference, and as a specification check we also report the longer seven–year

differences 2007–2014, 2010–2017, 2011–2018, and 2012–2019. We cluster standard errors

by commuting zone.19

While it seems natural to form a panel using a dependent variable based on what

16 We lag the change in patents to account for their reflecting patents applied for rather than granted.
17 We have recently become aware of the method of Sävje (2023), which overcomes problems with a

spatial spillover method we rejected. We may adopt it in a future version of the paper.
18 A different solution would be to perform least squares weighting by commuting zone total job ad-

vertisements. But Solon, Haider and Woodridge (2015) recommend against weighting in such situations;
also, total job advertisements and distance to the closest hotspot are correlated.

19 To cluster the standard errors we use the Stata qreg2 command written by Parente, Santos Silva
(2016).
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we obtain directly from the data, job vacancies, it would be more desirable to base the

dependent variable on AI employment rather than vacancies, since a change in vacancies

represents an acceleration in employment.20 In the absence of this information, we rerun

the estimation using cumulative AI vacancies, which would equal employment if those

jobs were never destroyed or vacant again. With this dependent variable, all regressions

using any difference length use all years of data.21

All these regressions establish whether distance to an AI hotspot based on papers+patents

is a barrier to the growth of AI job advertisements. We would like to know whether the

barrier is to spillovers from AI papers or AI papers. The high correlation between the

distance to an AI paper hotspot and the distance to an AI patent hotspot makes it in-

feasible to define separate paper and patent hotspots and run a horse race between the

distance to the closest hotspot of either type. Nor is the radius approach well–suited to

distinguishing between the relative importance of the two AI publication types. Instead,

we retain a hotspot definition based on thresholds of AI publications (papers + patents),

and include an interaction between the distance to the closest hotspot and the share of the

hotspot’s publications that is patents. This has the advantage of using all the variation in

the ratio of papers and patents in a hotspot and sidesteps the multicollinearity problem.

Further analysis is designed to distinguish whether the barrier is to the adaptation or

adoption of AI, or merely to additional innovation in AI. For this purpose, we examine

different AI types separately, and we investigate the role of distance by occupation and

industry, using as the outcomes the number of AI job advertisements in a particular

occupation or industry, divided by job advertisements in that occupation or industry. We

use OLS for some of these regressions, where the median of the dependent variable is

zero.22

20 Dernis et al. (2023) make this point about Burning Glass data.
21 However, differences involving 2007 are too short due to the missing 2008 and 2009 data.
22 The examination of the raw Burning Glass text files by Bloom et al. (2021) allows them to divide

the job postings according to whether the job will use, develop or produce the technology of interest.
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3 Descriptive statistics

The national time–series of AI job advertisements is plotted in Figure 1. The increase

over time from 9000 in 2007 to 190,000 in 2018 (and 135,000 in the first six months of

2019) far outstrips the 50% increase in the total number of job advertisements online.

Figure 2 shows that the AI jobs share in all advertisements rises from 0.07 percent to 0.75

percent, rising linearly with a break in the slope in 2016, when growth increases (black

squares, left scale). The IT jobs share is much higher (red circles, right scale) and evolves

quite differently, rising from 2007–2012, then changing non–monotonically but ending

lower in 2019 than 2012. The shares of the three types of AI job advertisements in all job

advertisements are shown in Figure 3: unspecified AI and “other AI” have grown equally

quickly over the whole period and begin and end at the same shares, but “other AI”

grew faster in the 2007–2012 period. Image processing, on the other hand, has not grown

over the period. The Figure 4 maps indicating commuting zones’ AI job advertisement

shares show how the fraction of commuting zones with no AI job advertisement (white)

shrank with time, and how the non–zero shares rose with time (as represented with darker

shading) to a maximum of 4.0% in San Jose in 2019 (and one other small commuting zone).

In panel A of Table 1 we show that the mean increase in the three–year AI job

advertisement increase is 0.06 percentage point, while the median increase is lower at

0.03 percentage point (first row). The minimum value of -2.46 percentage points and the

maximum value of 4.70 percentage points confirm the existence of the outliers mentioned

above: such large changes are caused by very small changes in the number of AI job

advertisements in commuting zones with few job advertisements. The mean seven–year

increase is 0.14 percentage point and the median increase is 0.09 percentage point (second

row). The lower panels of Table 1 shows the means of key covariates, including those

based on AI publications (panel D). The mean number of pre–2007 patents (5.5) is much

lower than the mean number of pre–2007 papers (150); the median for both is zero.

The national time–series for AI papers and patents from 1950 onwards (a few pub-

lications are pre–1950) are shown in Figure 5. Papers (times the number of authors),
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plotted in black squares using the left scale, increased from 6 in 1950, to 11,620 in 2007,

to 49,484 in 2018 and to 65,411 in the first half of 2019. Patents rose from 1 in 1950

to 469 in 2007 to 1525 in 2017; the numbers fall in 2018 and 2019, reflecting the dating

using patent applications rather than patent awards. Appendix Table 2 shows summary

statistics based on the underlying vacancy micro–data.

One definition of an innovation hotspot we use is having at least 1000 cumulative

publications by 2006, and Figure 6 depicts the number of papers and patents for each

of the 31 commuting zones satisfying this requirement: commuting zones are ordered by

papers+patents. The three top publishers are Los Angeles, Boston and Arlington, V.A.

(the area around Washington, D.C.), each with more than 6000 publications, followed by

the trio of New York, Pittsburgh and San Jose, with more than 4000 publications each.

The highest publishing commuting zone outside the Northeast (including Pittsburgh) and

California is Seattle in ninth place. Some of the hotspots are recognizable as technology

and university centers, others as university towns, and others as centers of military activity

(Los Angeles is all three). New York, San Jose and Seattle stand out as having a large

number of patents, while Pittsburgh stands out among the top ten as having a small

number of patents. The five AI “pioneer locations” designated by Bloom et al. (2021) are

all in our top nine AI hotspots, though notably do not include Los Angeles or Pittsburgh.23

The map in Figure 7 shows the distribution of cumulative pre–2007 publications, while

the four maps in Figure 8 show that there is very slow diffusion of publications through

2014, but faster diffusion afterwards.

4 Regression analysis

We begin by presenting various specifications of regressions in which the definition of

an innovation hotspot is having at least 1000 pre–2007 publications (the sum of papers

23 Bloom et al. (2021) use 917 Core–Based Statistical Areas as their geographic units. The pioneer
locations are (in order): Seattle; San Jose; San Francisco; New York–Newark and Boston. Based on AI
patents alone, our top hotspots would be (in order): New York; Seattle; San Jose; Arlington (Washington);
Newark; Houston and Boston. The Arlington V.A./Washington D.C. area is the main discrepancy
between the two patent–based lists.
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and patents), and then analyze the sensitivity to changes in the hotspot threshold using

the preferred covariates. Next, we test whether the distance effects are due to hotspots’

patents or research papers. Third, we investigate how the role of distance varies by type

of AI skill, occupation and industry, seeking to distinguish between the impact of distance

on AI adoption, adaptation and innovation.

4.1 The effect of distance on AI vacancies

The effect of distance to the closest innovation hotspot on the change in AI job advertise-

ments as a percent of all job advertisements, is presented in Table 2. In both panel A,

for three–year differences, and panel B, for seven–year differences, the median regression

coefficients on distance are statistically significantly negative in all columns, with the

seven–year coefficient between 1.8 and 2.6 times the three–year coefficient. In the first

column, the only controls are log distance to the closest hotspot, the log of its AI publi-

cations, and five controls for the commuting zone’s AI papers and patents through 2006.

The three–year coefficient of -0.011 implies that a 10 percent greater distance, which is

approximately the standard deviation of the distance, reduces the median growth rate

of AI jobs’ share by (0.011)(0.1)=0.0011 percentage point. This is 3.1% of the median

growth rate of 0.035 percentage point in Table 1, a modest effect; the equivalent number

for the seven–year distance coefficient of -0.029 is also 3.1%.

In column 2, the addition of other initial conditions, average distance to other commut-

ing zones and distance to the nearest commuting zone, render the coefficient of interest

slightly more negative: -0.017 for three–year differences and -0.031 for seven–year differ-

ences. In column 3, we add controls for changes in log job advertisements, IT jobs’ share,

AI papers and AI patents, which leaves the coefficients on distance almost unchanged.

The addition of the distance to the closest large commuting zone (one of the 31 most

populous, since there are 31 AI publication hotspots) and the log of its population in

column 4 renders the coefficient on distance slightly less negative, to -0.013 for three–

year differences and -0.026 for seven–year differences. These are our preferred coefficients,
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corresponding to 3.7% and 2.8% of median growth respectively. The standard errors are

higher in this specification than in the specification of column 3, due to the fairly high

correlation of distance to closest hotspot and distance to closest large commuting zone.

We test whether our results are driven by the remote commuting zones of Alaska and

Hawaii by dropping them from the estimation in column 5: this renders the coefficient of

interest slightly less negative in each panel. On the other hand, using mean rather than

median regression (column 6) makes the coefficients more negative, at -0.015 for three–

year differences and -0.034 for seven–year differences. Results by AI type, occupation and

industry in later tables which rely on OLS because the median AI job share is zero may

thus slightly overstate the effect of distance.

The threshold of 1000 AI publications to designate a hotspot is arbitrary, so it is

important to test the sensitivity of the distance effect to the threshold. We would expect

that very low thresholds would lead to a finding of no effect of distance and we can

use as a falsification test the coefficient on the distance to the closest commuting zone

with at least zero AI publications by 2006 i.e. the distance to the closest commuting

zone (without any hotspot publication or population–related distance control). If this is

negative, a negative coefficient on distance to the closest hotspot could be picking up a

spurious effect. Note that as the definition of the hotspot changes, so do three covariates

in addition to the distance to the closest hotspot: the number of publications in the closest

hotspot, the distance to the closest large commuting zone (potentially, as the pool of large

commuting zones changes to contain the same number of commuting zones as the number

of hotspots), and the population in the closest large commuting zone.

In Figure 9 panels A (three–year differences) and B (seven–year differences), we plot

the point estimates for the median regression coefficients on log distance to the closest

hotspot for different thresholds. With the exception of the hotspot threshold–specific

covariates, the specifications behind the coefficients plotted with black circles are the

same as in Table 2 columns 4–6 (i.e. full covariates), while the blue dashed curves are

the same as in Table 2 column 3 (i.e. no controls related to large commuting zones). All

four curves are U–shaped in the threshold range of 0–2000 publications, and equal zero at
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thresholds of 0 and 1 (some of the points for these two thresholds are indistinguishable).

The coefficients are statistically significantly negative for thresholds in the range 300–

1500 for the black curves and to a higher threshold for the blue curves. Although the

coefficients along the curves based on specifications with and without large commuting

zone controls are never statistically significantly different, the point estimates do differ

somewhat in the threshold range 1500–2500: where the curve without the controls rises

to a point estimate shy of zero at the 2000 threshold and then flattens, the curve with

the controls rises to above zero at 200, then falls back below zero.

A curve sloping downward from the origin is consistent with the hypothesis that as

a commuting zone’s number of AI publications increases, proximity to it is increasingly

beneficial. The upward–sloping part of the curve and the subsequent lack of any distance

effect were not anticipated, but are consistent with the hypothesis that once hotspots be-

come sufficiently large, their inventions and development are sufficiently prominent that

even distant commuting zones have access to their benefits. The prominence could be due

to a mixture of publication in more prominent journals; non–hotspot researchers, man-

agers or owners monitoring the activity of large hotspot firms and researchers regardless

of how the results are disseminated; media exposure; and large hotspots having geograph-

ically wider personal networks as the numerous students of AI researchers and developers

fan out to take jobs.

In panels C and D of Figure 9, we plot the equivalent graphs for AI job publications

cumulated from 2007, rather than contemporaneous AI job publications, and find sim-

ilar U–shapes with similarly statistically significant coefficients for hotspot publication

thresholds in the 300–1500 range. The negative point estimates in this range are smaller

than in panels A and B, though not directly comparable. The results for three different

specifications at the 1000 threshold are shown in Table 3 columns 1–3: coefficients are

similar across the specifications.

Our second identification approach is to define the key distance covariate as the radius

of the circle enclosing a certain number of pre–2007 AI publications. In columns 4–6 of

Table 3, we present the median regression coefficients on the distance variable from three
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specifications for both three–year and seven–year differences: all are statistically signif-

icantly negative for our chosen hotspot threshold of 1000 publications. In the preferred

specifications of column 6, the three–year difference coefficient of -0.016 indicates that a

10% increase in the radius of the circle enclosing at least 1000 AI publications (about

three–quarters of a standard deviation) reduces AI job advertisement growth by 0.0016

percentage point, or 4.6% of median growth; the corresponding number for the seven–year

difference coefficient of -0.035 is 3.8%.

We test the sensitivity of the radius method to the hotspot threshold in Figure 10; as

in Figure 9, we plot coefficients on distance to the closest hotspot with controls related

to large commuting zones with black dots, and the coefficients on specifications without

these controls with a dashed blue line. We observe U–shapes in both panels (for three

and seven–year differences), though there are some differences compared to Figure 9. In

the radius approach, there is no equivalent to the falsification test of a zero threshold,

and the point estimate at a threshold of one publication is slightly negative rather than

zero, though it is statistically insignificant from zero. Also, the effects at high thresholds

are statistically significantly negative, rather than zero, and at high hotspot thresholds

it is the blue curve based on specifications without large commuting zone controls that

rises more. Considering all curves in Figures 9 and Figure 10, we conclude that once a

commuting zone reaches 2000 or more pre–2007 publications, it appears to be able to

influence other commuting zones with little interference from distance, but the role of

distance may not disappear completely. Appendix Figure 1 shows that the results are

similar when Alaska and Hawaii are dropped.

If the coefficient on the distance to the closest hotspot or on the radius encosing a

given number of AI job advertisements indeed reflects barriers to geographic spillovers,

it it very likely to be less negative for commuting zones which themselves have more AI

publications: the more AI activity a commuting zone has, the less it needs its neighbors.

Returning to the original identification strategy, we therefore include controls for the

interaction of log distance to the closest hotspot with the commuting zone’s own pre–

2007 AI publications controls. Because there are three such interactions, we calculate
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the median regression effects of distance at different numbers of publications and present

them in Table 4, columns 1 (three–year differences) and 2 (seven–year differences).24

By construction, the coefficient on the main distance to hotspot effect represents the

distance effect for commuting zones with no pre–2007 AI publications of their own: it is

statistically significantly negative in both columns. The three interaction coefficients are

only jointly statistically significant for three–year differences, but the qualitative pattern

is the same for three–year and seven–year differences, as shown in the bottom four rows:

the coefficient on distance becomes less negative as a commuting zone’s own AI publica-

tions rise from zero, eventually rising to a statistically insignificant estimate of close to

zero by the time a commuting zone has 1000 pre–2007 AI publications of its own. The

coefficient rises from -0.016 to -0.002 for three–year differences, and from -0.031 to -0.002

for seven–year differences. The results reinforce evidence that AI job posting grows faster

in commuting zones that are near hotspots, which we assume means that hiring of AI

workers does too. Next we turn to the question of whether this result is driven by AI

papers or AI patents.

4.2 The relative effects of papers versus patents

We begin our examination of the relative importance of papers and patents by defining

hotspot thresholds based on a commuting zone’s number of patents only and running

median regressions based on our Table 2 column 4 specification.25 The coefficients are

plotted in Figure 11 for three–year and seven–year differences, and the familiar pattern of

Figure 9 emerges (if one ignores a rogue coefficient at the 110 patent threshold in panel B),

along with statistically significantly negative coefficients for thresholds below 40 patents.

One difference compared to Figure 9 is that the curves slopes downward initially

thanks mainly to the falsification threshold of zero patents, whose coefficient equals zero

24 Recall that there are five pre–2007 publication main effects, but that we sum papers and patents for
the purposes of interactions with distance to hotspot, due to collinearity issues.

25 We control as before for the distance to the closest large commuting zone and the log of that
commuting zone’s population. As when the hotspot threshold was based on AI publications, for each AI
patent threshold there are h hotspots, and we designate as large commuting zones the most populous h
commuting zones.
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as expected. Distance from a hotspot defined as having a single pre–2007 AI patent or

more has a statistically significant negative coefficient in each panel. Because the number

of AI patents is so small, we think it plausible that proximity to a commuting zone with

a single pre–2007 AI patent could matter, whereas we would not find this plausible for

a single pre–2007 AI paper. We do not show a figure with thresholds based on papers

alone, because it is so similar to Figure 9.

This separate graph for patents cannot be the basis for disentangling papers and

patents, however, since the number of AI papers and the number of AI patents in a com-

muting zone are highly correlated. Instead, we add as controls the share of the closest

hotspot’s AI publications which are patents ( AI patents
AI patents+AI papers

) and its interaction with

the log distance to the closest innovation hotspot. The coefficients on this interaction

are -0.095 (0.039) for three–year differences and -0.33 (0.11) for seven–year differences,

indicating that the coefficient on distance from the closest hotspot is statistically signif-

icantly more negative the greater the share of patents among the hotspot’s publications.

An intuitive way of grasping the magnitude is to evaluate the distance effect at the 75th

and 25th percentiles of the patents/publications ratio. These 75th and 25th percentile

effects are -0.014 (0.003) and -0.010 (0.003) for three–year differences and -0.035 (0.007)

and -0.020 (0.008) for seven–year differences: the 25th percentile effects are thus only

60–70% of the 75th percentile effects, but are still statistically significant.

We plot the 75th percentile and 25th percentile distance coefficients corresponding to

various hotspot thresholds in Figure 12 panels A and B (note that as the threshold rises,

the number of different values of the patents/publications ratio falls). All four curves have

the U–shape of Figure 9, and both are zero at the thresholds of 1 and 2000. At the most

negative part of the curves, the coefficient at the 25th percentile is as low as half that of

the 75th percentile. The gap between the 25th and 75th percentiles of patents’ share of

publications is not generally statistically significant, but for thresholds in the range 100 to

2500 for three–year differences and 100 to 4000 for seven–year differences, the coefficient

on the interaction term is statistically significantly negative (not pictured).

There is therefore a greater AI job vacancy penalty due to distance from a patent–
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intensive hotspot than from a paper–intensive hotspot, but the distance penalty remains

for a paper–intensive hotspot. Having established this, we turn to assessing in more detail

which sorts of job advertisements lie behind distance as a barrier to the influence of an

innovation hotspot, to ascertain whether the AI jobs influenced by distance are in fact AI

adoption or adaptation jobs rather than simply jobs that will lead to more AI research

papers and patents. Acemoğlu et al. (2022) report that 2.2% of workers are employed at

firms that produce AI and 12.6% of workers are employed at firms that use AI, but given

likely within–firm differences across these categories in the share of workers requiring AI

skills, the statistics are not very informative as to what share of our AI jobs advertisements

are likely to be for workers producing AI.

4.3 The effect of distance on AI hiring by type of AI

We present the results for the effect of distance by type of AI in Table 5 and Figure 13,

using median regressions except in the case of three–year differences in image processing

(since the median of the dependent variable is zero). The first row of Table 5 panel A

shows that the largest category of AI is the unspecified category, constituting 37% of AI

advertisements (based on the advertisement micro–data), while image processing makes

up 12% of AI advertisements and other AI the remaining 50%. The second row presents

the share of AI advertisements in these categories advertising for a computer science or

mathematics occupation, a proxy for a job likely to be in innovation or adaptation rather

than adoption. The share is highest in the unspecified AI category (68%), compared to

only 50% in the image processing category, with an intermediate 62% for the residual

“other AI” category. This suggests that image processing could be viewed as closer to an

application than the other categories.

The regression coefficients reported in Panel B (three–year differences) and panel C

(seven–year differences) show that distance to the closest AI hotspot has no impact on

growth the the image processing share of job advertisements (column 3), while the ef-

fects for unspecified AI (column 2) and other AI (column 4) are statistically significantly
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negative with similar magnitudes of about half the overall magnitude in column 1.26

Consistent with these results, Figure 13 shows that the coefficients for image processing

fluctuate around zero and do not become gradually more negative as the hotspot threshold

is raised from zero publications. Coefficients for unspecified AI and other AI, on the other

hand, trace out the pattern familiar from Figure 9, with the coefficients in the threshold

range approximately 200–1250 being statistically significantly negative (not pictured).

Unlike the pattern for all AI types in Figure 9, however, coefficients become negative again

at hotspot thresholds above 2000, sometimes statistically significantly so. Figure 13 also

shows that the distance effect at the 2000 threshold is statistically significantly positive for

other AI. This type of AI is therefore driving the positive (albeit statistically insigificant)

point estimate at this threshold in Figure 9 panels A and B black dots; we have no

explanation for this anomalous result, though we note that the point estimate is not

positive without controlling for distance to the closest large commuting zone (panels A

and B blue dashed line).

The results are evidence that distance from a hotspot does not hinder growth in image

processing, an application, but does hinder growth in AI job advertisements for unspecified

AI and for other AI. The results also suggest that for the types of AI for which distance

to a hotspot is a barrier, the effect of distance does not fade away completely when the

threshold for a hotspot is set very high. This is consistent with the results from the radius

identification approach.

4.4 The effect of distance by occupation

A different way of testing whether distance from an AI hotspot affects growth in AI

innovation or adoption is to examine the effect by occupation, creating occupation–specific

microdata samples based on 2–digit SOC, and aggregating each to the commuting zone–

year level. If an AI job advertisement is for a computer scientist, the job is likely to

26 If the estimation were all OLS, the columns 2–4 coefficients would sum to the column 1 coefficient.
Although all regressions except one are median regressions, the columns 2–4 coefficients nevertheless sum
approximately to the column 1 coefficient.
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be innovation or adaptation rather than adoption. An advertisement for an engineer is

likely to be for adaptation or adoption, and an advertisement for a business, finance or

sales occupation is clearly for adoption. An AI job advertisement for a manager is less

clear–cut, since it could be a position managing computer scientists engaged in innovation.

In Table 6 we analyze these occupations, which have the highest AI job share levels

and growth, for the hotspot AI publication threshold of 1000 (three–year differences in

columns 1–3 and seven–year differences in columns 4–6). The number of observations are

in columns 1 and 4: some commuting zone–years do not have job advertisements from

every occupation. The means of the dependent variables are in columns 2 and 5: computer

and mathematical occupations have by far the fastest growth in the share of AI job

advertisements, with an average three–year growth of 0.59 percentage point and an average

seven–year growth of 1.22 percentage points. Architectural and engineering occupations

grow much less quickly (0.18 and 0.36 percentage point), followed by management (0.07

and 0.25 percentage point respectively) and business and finance occupations (0.07 and

0.15 percentage point respectively). Sales occupations have a higher share of AI job

advertisements than all occupations pooled, but the growth is similar to that of the pooled

occupations (0.01 and 0.02 percentage point for three–year and seven–year differences

respectively).

The OLS coefficients on the log distance to the closest AI hotspot are reported in

columns 3 and 6. The statistically significantly negative coefficients for computer and

mathematical occupations (second row) are ten times larger than the coefficients for all

occupations (first row), at -0.133 (three–year differences) and -0.280 (seven–year differ-

ences). These coefficients indicate percentage point effects; the percent effects for com-

puter scientists/mathematicians, however, are similar to those for pooled occupations – a

10% increase in the distance to the closest AI hotspot reduces mean AI job advertisement

growth by 2.2% (three–year differences) and 2.3% (seven–year differences). The statisti-

cally significantly negative coefficients for architecture and engineering (-0.050 and -0.112

percentage point respectively) are about three times the coefficients for all occupations,

but also have comparable percent effects. In slight contrast, the statistically significantly
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negative (at the 10% significance level or more) coefficients for sales are small, but im-

ply larger percent effects; the coefficient is sensitive to a few outlier commuting zones,

however. Conversely, there is no negative effect of distance for management occupations,

business and finance occupations or the pooled “other” occupations.

We pursue the occupations analysis by assessing the pattern of distance coefficients

by hotspot threshold in Figures 14 (computer and mathematical, engineering and sales

occupations) and 15 (management and business/finance occupations). The coefficients

are based on median regressions for the computer and mathematical occupations (whose

median is greater than zero) and on OLS regressions for engineering and sales occupa-

tions. In panel A (three–year differences, red circles), the coefficients for all computer and

mathematical occupations initially become more negative as the hotspot threshold rises,

before stablizing then slowly becoming less negative. The coefficients from a threshold

of about 200 are statistically significantly negative. Seven–year coefficients are similar,

except that the coefficient abruptly becomes zero at a threshold just before 2000.27

We also plot the median regression coefficients for one of the two largest detailed

computer and mathematical occupations, developers of software applications (15-1134).

In the micro–data, this group represents 28% of all advertisements for computer and

mathematical occupations, and 35% of advertisements for computer and mathematical

occupations requiring AI skills.28 Any distance effect for this group is likely to reflect

a barrier to adaptation: its practitioners are developing applications to be adopted by

others. Both panels show that the pattern and magnitudes for this (yellow triangles) are

fairly similar qualitatively and quantitatively to those of all computer and mathematical

occupations. A difference is that in panel A, the coefficient for software applications devel-

opers gradually becomes less negative after a threshold of about 750, and becomes zero by

a threshold of 2000. In this panel, the coefficient on distance is statistically significantly

negative (at the 5 or 10 percent level) between the thresholds of approxmiately 400 and

27 The jump in the coefficient occurs when the group of hotspots shrinks to exclude Austin, TX, the
last hotspot in the middle of the country.

28 The other large detailed occupation is “other” computer, which also accounts for a large share of AI
job advertisements. We do not examine this as the title is too vague for the analysis to be informative.
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1250. In panel B, the coefficient is statistically significantly negative between thresholds

200 and 1250; as for all computer and mathematical observations, the coefficient suddenly

rises at a threshold just below 2000, and even becomes quite positive (and statistically

significant at the 10% level), as seen for “other AI” in the previous figure.

The coefficients on distance for and architect/engineering occupations are similar to

those for all computer and mathematical occupations and for developers of software appli-

cations, though statistically significantly negative at thresholds above 2000. The curves

for sales in Figure 14 at first sight hew closely to the Figure 9 pattern, albeit with less

negative coefficients. However, they are lacking the expected downward slope at low

thresholds, since the apparent decline relies on the placebo hotspot threshold of zero.

The haphazard patterns in Figure 15 for management and business/finance occupations

confirm that distance to an AI hotspot appears to play no role in the AI job growth in

management and business/finance occupations.

We have also analyzed other detailed occupations, but generally find that although

there is always at least a hint of the familiar shape when we plot the coefficients on

distance against threshold, that the coefficients are generally statistically insignificant.

In particular, the coefficients for either occupation 15-111 (computer and information

research scientists) alone, or for this occupation pooled with mathematicians, statisticians

and operations researchers, which have a large share of advertisements requiring AI and

are likely to be innovating in AI, the coefficients are imprecisely estimated, but possibly

more negative that those reported in the graphs (results not presented).

The various patterns by occupation are consistent with the hypothesis that distance to

the closest hotspot is a barrier to adapting but not adopting AI, with workers in computer

and mathematical occupations (particularly developers of software applications) engaged

in adaptation rather than innovation, and engineers engaged in adaptation rather than

adoption. Sales may be an exception to the finding that no effect of distance is found for

the clearly adoptive occupations business/finance and management.
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4.5 The effect of distance by industry

Another tack for isolating job advertisements for AI innovation versus those for AI adop-

tion or adaptation is to examine the effects by industry. To do so, we run commuting

zone–year level regressions based on different underlying microdata samples, namely a

sample for each of several NAICS 2 code groups. Of particular interest is the finance

and insurance industry (NAICS 2 code 52), which has had the highest percentage point

growth in the share of AI job advertisements, a growth which reflects adoption, or at the

very least adaptation of AI, rather than production of new AI. Conversely, the informa-

tion sector (NAICS 2 code 51) presumably includes much of the AI innovation performed

at companies.

Results of OLS regressions for the 1000 publication threshold are reported in Table 7,

based on the Table 2 column 4 specification, the left three columns for three–year differ-

ences and the right three for seven–year differences. The number of observations are in

columns 1 and 4: some commuting zone–years do not have job advertisements from every

industry. Columns 2 and 5 contain the means of the dependent variables: the finance

and insurance industry had an average three–year increase in the AI job advertisement

share of 0.131 percentage point and a seven–year increase of 0.276 percentage point, the

highest of any sector. There is a similarly rapid increase in the AI share in the category

of job advertisements for which the industry is missing: 0.121 percentage point and 0.249

percentage point. The third fastest growth is in the industry category grouping real es-

tate, professional and scientific services and administration (0.115 and 0.244 percentage

point respectively); while the fourth sector with rapid AI growth is unsurprisingly the

information sector (0.104 and 0.208 percentage point respectively). Other sectors have

much slower AI job share growth.

The OLS coefficients on the distance to the closest AI hotspot are reported in columns 3

and 6: the coefficients are negative for the four groups mentioned above, with magnitudes

about double that for all industries (reported in the first row), and statistically significant

except for the information sector (and one coefficient significant at the 10% level). No
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other industry categories yield negative or statistically significant coefficients. The most

negative and most precisely estimated coefficients are for the missing industry group: -

0.051 compared to -0.015 for all industries for three–year differences, and -0.109 compared

to -0.034 for seven–year differences. The seven–year coefficient of -0.065 for the finance

and insurance sector implies that a 10% increase in distance reduces the growth in AI’s

share of job advertisements by 0.0065, or 2.3% of the 0.276 percentage point average

increase.

In Figure 16, we present the plots of the coefficient on distance with a range of AI

hotspot thresholds for the finance and insurance sector (panel A for three–year differences

and panel B for seven–year differences). These graphs display a qualitative pattern very

similar to that for all industries in Figure 9, albeit with few statistically significant co-

efficients and point estimates for thresholds in the range 100–1000 that are much more

negative (note the very different scales). Although only suggestive because of the large

standard errors, the results are very interesting given the absence of any distance effect

for business and finance occupations found in the previous section. This implies that

distance is an obstacle to growth in AI vacancies in finance and insurance not because it

is an obstacle to growth in vacancies for workers who would be adopting AI, but because

it is an obstacle to growth in vacancies for workers adapting AI to this sector.

The lower two graphs of Figure 16 plot the coefficients on distance for the informa-

tion sector. The pattern by hotspot threshold for the information sector is not consistent

with theory, with few negative distance coefficients and no statistically significantly neg-

ative coefficients. This points to distance being no barrier to growth in AI innovation

employment. We have tried to test this better by using the NAICS 6 codes to focus on

narrower industries, ignoring issues related to the large share of missing values in the

NAICS 6 variable. We select samples of advertisements posted by universities and by

firms performing research and development, both of which presumably advertise AI jobs

in innovation, rather than adoption or adaptation. Unfortunately, the standard errors on

log distance to the closest hotspot are too large for conclusions to be drawn (the results

are not shown).
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Our industry results indicate that distance from an AI hotspot can be a modest barrier

to the adaptation of AI. The lack of support for a role of distance for the information

sector is some evidence against distance being a barrier for innovation, though hardly

conclusive; this paper is not seeking to test that hypothesis.

The very strong role of distance from a hotspot and large increase in the share of

AI jobs for advertisements with missing industry are worthy of further attention. We

first confirm that when the distance coefficients are plotted against hotspot threshold,

the familiar pattern of Figure 9 emerges (figure not reported). Thanks to our imputation

of many industry values based on employer name, only six percent of job advertisements

with missing industry have a valid employer name. Altogether, job advertisements with

a missing industry and a valid employer name represent 1% of all job advertisements,

compared to 15% missing both employer name and industry and 19% with valid industry

but missing employer name. In results not reported, we confirm that the very strong

role of distance is found in regressions based on an underlying microdata sample of job

advertisements missing both industry and firm name, but not in those based on a sample

of job advertisements missing a firm name but with a valid industry. This shows that

the very strong role of distance is not straightforwardly associated with Burning Glass

Technology’s having recorded a missing firm name for advertisements posted by an em-

ployment agency. Rather, it is associated with employment agency advertisements for

which Burning Glass could not establish an industry (Burning Glass Technologies codes

industry based primarily on employer name; Burning Glass Technologies 2019). The oc-

cupation, skill and year mixes of the two missing firm name categories differ, probably

reflecting the degree to which industry may be inferred based on this information, but not

in a way that is enlightening in connection with the role of distance to closest hotspot.

4.6 Firms operating in multiple locations and firm size

Previous papers have shown that firms operating in multiple locations speed the transfer

of technology. We examine this hypothesis in our context by creating a variable measuring
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the number of 2007 job advertisements in a commuting zone placed by firms which also

post in the closest AI hotspot in 2007. It is irrelevant for our purposes that certain types

of firms such as supermarkets have locations spread across commuting zones including

AI hotspots. Therefore, we base our counts on job advertisements in computer and

mathematical occupations: such advertisements account for 63% of AI advertisements

(see Table 5). If the mechanism through which distance deters AI adoption is as a barrier

to information about technology, then when more such ties exist, the effect of distance to

the closest hotspot will be smaller. If the mechanism is related to the physical mobility

of AI specialists, the effect of distance could be smaller if the difficulty is identifying

appropriate workers at a distance, rather than attracting them. In unreported results,

we find no role for the interaction between the count and the log distance to the closest

hotspot. This is in part because the main effect of the count and the interaction term are

highly correlated.

We have also investigated whether the effect of distance varies by firm size. We count

the number of job advertisements by each firm advertising in a given year, and create

thresholds adjusted for the total number of job advertisements in the year. Unreported

results show no pattern by firm size. As for the analysis of firms operating in multiple

locations, the analysis is necessarily based on job advertisements for which a firm name

is provided. We now sum up and reconcile the results of the different sections.

5 Conclusion

Our results indicate that online vacancies for jobs requiring Artificial Intelligence (AI)

skills grow more somewhat more slowly in U.S. commuting zones farther from AI inno-

vation hotspots. We assume that companies are able to fill the vacancies they post, and

equate this effect with distance being a barrier to hiring AI workers, either due to com-

panies already operating in a distant commuting zone hiring fewer AI workers or due to

companies anticipating requiring AI workers being less likely to choose to operate in a

distant commuting zone.
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For a hotspot definition of least 1000 AI papers or publications prior to 2007, we find

that a 10% greater distance from the closest hotspot (about a standard deviation) reduces

a commuting zone’s growth in AI jobs’ share of job advertisements by 3–5% of median

growth. Our investigation of the sensitivity to the definition of a hotspot shows that if the

threshold of pre–2007 AI publications is set low, proximity to a hotspot is unimportant

for other commuting zones, a sign that the moniker of hotspot is inappropriate. The

effect of distance to the closest hotspot becomes more negative as the threshold is raised

from one publication towards around 500 publications, although the change is not always

statistically significant.

However, the effect of distance to the closest hotspot becomes less negative as the

threshold is raised above around 1000 publications, and even rises to zero in some anal-

ysis. This is consistent with the hypothesis that once hotspots become sufficiently large,

their inventions and development are sufficiently prominent that even distant commut-

ing zones have access to their benefits. The prominence could be due to a mixture of

publication in more prominent journals; non–hotspot researchers, managers or owners

monitoring the activity of large hotspot firms and researchers regardless of how the re-

sults are disseminated; media exposure; and large hotspots having geographically wider

personal networks as the numerous students of AI researchers and developers fan out to

take jobs.

The more pre–2007 AI innovation a commuting zone has itself, the less important

is its distance from an AI hotspot: if a commuting zone is itself a hotspot as defined

by a threshold of 1000 pre–2007 publications, its subsequent growth in AI vacancies is

unaffected by its proximity to other hotspots. We find that distance from an innovation

hotspot slows growth in AI vacancies more if the hotspot’s mix of innovation is more

oriented to AI patents than AI scientific papers.

Our analysis by AI type, occupation and industry leads us to conclude that much of

the negative effect of distance from a hotspot is an impediment to adapting AI to new

situations, rather than to adopting AI, possibly because AI is not yet mature enough for

adoption to be common. We find that distance to the closest hotspot slows AI vacancy
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growth in the finance and insurance industry, which we interpret as the presence as a

barrier to adaptation because distance does not slow AI growth for business and finance

occupations (nor for managers). Even at the end of the sample period, a majority of AI

job vacancies were for computer scientists, and we find that the effect of distance from the

closest hotspot on growth in AI vacancies for computer scientists is ten times the level for

pooled occupations (in percentage point terms; in percent terms it is similar). We interpret

this as at least in part an effect on adaptation, and not merely on innovation, because we

find an effect of the same magnitude for developers of software applications. We find no

effect of distance on the growth in job vacancies requiring image processing skills, skills

possibly reflecting AI adoption, nor on growth in job vacancies in the information sector,

likely to reflect AI innovation.
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Figure 1: Number of online AI job advertisements 2007–2019
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Notes: Data for 2019 are for January–July. Data for 2008 and 2009 are not available.
Source: Burning Glass Technologies.
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Figure 2: AI share of job ads (%)
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Figure 3: Growth in share of job advertisements accounted for by different types of AI (%)

0

.1

.2

.3

.4
Sh

ar
e 

of
 jo

b 
ad

s 
%

2007 2010 2012 2014 2016 2018 2020
 

Unspecified AI only Image Processing Other AI

Note: Unspecified AI job advertisements require “Artificial Intelligence” and/or “Machine Learning” skills with no further
detail given. Image processing AI job advertisements require image processing as one of the required skills. The “other”

category is defined so the three categories are mutually exclusive.
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Figure 4: AI job advertisements as percent of jobs advertisements in given year
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(c) 2014 (d) 2018
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Figure 5: AI publications 1950-2019
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Figure 6: Innovation hotspots’ AI publications through 2006
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Figure 7: Commuting zones’ AI publications through 2006
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Figure 8: Commuting zones’ AI publications in given year
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Figure 9: Effect of distance with contemporary and cumulative AI job advertisements
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Note: The black circles are the coefficients on log distance to the nearest hotspot from median regressions of the change in
the share of AI job advertisements in all advertisements, based on the specification of Table 2 columns 4–6; the 95%

confidence intervals are also shown. The number of observations in each regression is 2964 in panels A and C and 5928 in
panels B and D. The dashed blue line represents the coefficients from regressions which do not control for the log distance
to the closest large commuting zone and the log of its population, but are otherwise the same. The x–axis is the number

of pre–2007 AI publications designated as the threshold for a commuting zone to be an AI hotspot.
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Figure 10: Effect of radius with and without population control
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Note: The black circles are the coefficients on radius enclosing the number of pre–2007 AI publications on the x–axis from
median regressions of the change in the share of AI job advertisements in all advertisements, based on the specification of
Table 3 column 6; the 95% confidence intervals are also shown. The number of observations in each regression is 2964 in

panel A and 5928 in panel B. The dashed blue line represents the coefficients from regressions which do not control for the
population enclosed by the radius, but are otherwise the same.
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Figure 11: Effect of distance using patents only, with population control
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Note: The black circles are the coefficients on log distance to the nearest hotspot from median regressions of the change in
the share of AI job advertisements in all advertisements, based on the specification of Table 2 columns 4–6; the 95%

confidence intervals are also shown. The number of observations in each regression is 2964 in panel A and 5928 in panel B.
The designation of AI hotspots is based on patents only; the x–axis is the number of pre–2007 AI patents designated as

the threshold for a commuting zone to be an AI hotspot.
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Figure 12: Compare with evaluations by percentile of hotspot patents/publications
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Note: The black circles are the coefficients on log distance to the nearest hotspot, evaluated at the 75th percentile of the
hotspot’s patents/publications ratio, from median regressions of the change in the share of AI job advertisements in all

advertisements, based on the specification of Table 2 columns 4–6, as well as the hotspot’s patents/publication ratio and
its interaction with the log distance to the nearest hotspot; the 95% confidence intervals are also shown. The number of

observations in each regression is 2964 in panel A and 5928 in panel B. The dashed blue line represents the 25th
percentile. The x–axis is the number of pre–2007 AI publications designated as the threshold for a commuting zone to be

an AI hotspot.
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Figure 13: Effect of distance by type of AI skill requested in advertisements
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Note: The black circles are the coefficients on log distance to the nearest hotspot from median regressions of the change in
the share of unspecified AI job advertisements in all advertisements, based on the specification of Table 2 columns 4–6.

The number of observations in each regression is 2964 in panel A and 5928 in panel B. The other lines represent the
corresponding coefficients for the two other types of AI. The x–axis is the number of pre–2007 AI publications designated

as the threshold for a commuting zone to be an AI hotspot.
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Figure 14: Effect of distance for computer–math, engineering and sales occupations
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Note: The points are the coefficients on log distance to the nearest hotspot from regressions of the change in the share of
AI job advertisements in all advertisements, based on the specification of Table 2 columns 4–6. Median regressions are

used for computer/math and software developer occupations and OLS regressions for engineering and sales. The number
of observations in panel A/panel B is 2934/5894 for computer–mathematical occupations; 5622/2726 for software

applications developers occupations; 5867/2921 for architects and engineers and 5910/2946 for sales occupations. The
underlying microdata samples are restricted in each regression to the occupation in question. The x–axis is the number of

pre–2007 AI publications designated as the threshold for a commuting zone to be an AI hotspot.
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Figure 15: Effect of distance for management and business–finance occupations
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Note: The points are the coefficients on log distance to the nearest hotspot from OLS regressions of the change in the
share of AI job advertisements in all advertisements, based on the specification of Table 2 columns 4–6. The number of
observations for managers is 5925 (panel A) and 2962 (panel B); for business–finance occupations 5881 (panel A) and
2924 (panel B). The underlying microdata samples are restricted in each regression to the occupation in question. The

x–axis is the number of pre–2007 AI publications designated as the threshold for a commuting zone to be an AI hotspot.
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Figure 16: Effect of distance for finance/insurance and information industries
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Note: The points are the coefficients on log distance to the nearest hotspot from OLS regressions of the change in the
share of AI job advertisements in all advertisements, based on the specification of Table 2 columns 4–6. The number of

observations is 5925 (panel A), 2961 (panel B), 5885 (panel C) and 2946 (panel D). The underlying microdata samples are
restricted in each regression to the industry in question. The x–axis is the number of pre–2007 AI publications designated

as the threshold for a commuting zone to be an AI hotspot.
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Table 1: Summary statistics 
 

 Mean Median Min Max Obs 
A. D AI job advertisement share (%)      
   D=3 0.061 0.035 -2.46 4.70 5928 
   D=7 0.136 0.093 -2.82 4.90 2964 
B. D cumulative AI job ad share (%)      
   D=3 0.031 0.022 -1.89 0.82 5928 
   D=7 0.074 0.062 -2.60 1.12 2964 
C. Hotspot (1000+ AI pubs) characteristics      
   Number of publications (papers+patents) 1938 1665 1044 6769 741 
   Patents*100/(papers+patents) 4.3 4.3 0 13.4 741 
D. Initial conditions covariates      
   Any AI paper prior to 2007 0.48 0 0 1 741 
   Any AI patent prior to 2007 0.17 0 0 1 741 
   AI papers prior to 2007 150 0 0 6617 741 
   AI patents prior to 2007 5.5 0 0 535 741 
   Job advertisements 2007 16,583 2570 3 696,205 741 
   Population in 2000 in thousands 380 104 1.19 16,393 741 
   IT share 2007 (%) 9.01 7.77 0 42.86 741 
E. Distances (km)      
   To closest hotspot (1000+ AI pubs) 412 324 40 3946 741 
   Radius of circle with 1000+ AI pubs 324 228 40 3946 741 
   To closest large CZ 372 286 8.75 3946 741 
   To other CZs (average) 1630 1451 1144 6385 741 
   To closest CZ 76.5 67.7 7.2 540 741 
F. Differenced covariates D=3      
   AI papers 17.7 0 -101 5508 5928 
   AI patents 37.3 0 -40 326 5928 
   Log job advertisements 0.17 0.25 -3.5 2.1 5928 
   IT job ad share (%) -0.31 -0.83 -45 46 5928 
G. Differenced covariates D=7      
   AI papers 37.0 0 -51 6596 2964 
   AI patents 0.73 0 -33 -48 2964 
   Log job advertisements 0.49 0.54 -2.75 3.26 2964 
   IT job ad share (%) -1.24 -2.11 -28.53 26.09 2964 

 
Notes: The definition of an AI publication hotspot in the table is a commuting zone (CZ) with at least 
1000 AI publications (patents+papers) by 2006 (31 CZs); the distance to the closest large CZ is the 
distance to the closest of the most populous 31 CZs. The location of a CZ is based on the locations of job 
advertisements, so the distance between adjacent CZs is positive. A paper is a journal publication or 
conference proceeding. 
 
  



Table 2: Effect of distance to an innovation hotspot on change in AI jobs’ share in advertisements 
 

 Median regression OLS 
 All commuting zones No AK/HI All 
 (1) (2) (3) (4) (5) (6) 
A. 3-year differences       
    Log distance to closest hotspot 
    (1000+ AI publications) 

-0.011*** 
(0.002) 

-0.017*** 
(0.002) 

-0.016*** 
(0.002) 

-0.013*** 
(0.003) 

-0.010** 
(0.003) 

-0.015** 
(0.005) 

    Observations 5928 5928 5928 5928 5928 5928 
    Pseudo R-squared/R-squared 0.09 0.10 0.10 0.12 0.13 0.13 
B. 7-year differences       
    Log distance to closest hotspot 
    (1000+ AI publications) 

-0.029*** 
(0.004) 

-0.031*** 
(0.006) 

-0.031*** 
(0.005) 

-0.026*** 
(0.007) 

-0.022** 
(0.007) 

-0.034** 
(0.011) 

    Observations 2,964 2,964 2,964 2,964 2,888 2,964 
    R-squared/Pseudo-R-squared 0.15 0.16 0.22 0.22 0.22 0.23 
AI publications through 2006,  
log closest hotspot publications  

Yes Yes Yes Yes Yes Yes 

Log job ads 2007; log population 2000; IT share 
in advertisements 2007; Log average distance to 
other CZs; log distance to closest CZ 

-- Yes Yes Yes Yes Yes 

Change in log ads, IT share, AI papers, AI patents -- -- Yes Yes Yes Yes 
Log distance to closest large CZ;  
log closest large CZ population 

-- -- -- Yes Yes Yes 

 
Notes: The dependent variable is the three-year difference (panel A) or seven-year difference (panel B) in AI jobs’ share of 
all job advertisements; the share measured in %. Data for 2007 and 2010-2019. All regressions include log number of 
publications (papers+patents) in closest AI hotspot; year dummies; and AI publications through 2006: dummies for any 
paper and for any patent, the number of papers and its square, and the number of patents. The definition of an AI 
publication hotspot is a commuting zone (CZ) with at least 1000 AI publications by 2006 (31 CZs); the distance to the 
closest large CZ is the distance to the closest of the 31 most populous CZs. Standard errors clustered by commuting zone 
in parentheses.  
*** p<0.01, ** p<0.05, * p<0.1 

  



Table 3: Effect of distance to closest hotspot on change in AI jobs’ share calculated cumulatively;  
effect of radius of circle enclosing 1000 AI publications  

 
  AI share calculated 

cumulatively 
AI share calculated 
contemporaneously 

 (1) (2) (3) (4) (5) (6) 
A. 3-year differences       
   Log distance to closest    
   hotspot (1000+ AI pubs) 

-0.008*** 
(0.001) 

-0.008*** 
(0.001) 

-0.007*** 
(0.001) 

-- -- -- 

   Log radius of circle 
   enclosing 1000+ AI pubs 

   -0.014*** 
(0.003) 

-0.015*** 
(0.003) 

-0.016*** 
(0.003) 

   Observations 5928 
   Pseudo R-squared 0.08 0.12 0.13 0.10 0.12 0.12 
B. 7-year differences  
   Log distance to closest    
   hotspot (1000+ AI pubs) 

-0.017*** 
(0.003) 

-0.016*** 
(0.003) 

-0.012*** 
(0.003) 

-- -- -- 

   Log radius of circle 
   enclosing 1000+ AI pubs 

-- -- -- -0.029*** 
(0.008) 

-0.032*** 
(0.007) 

-0.035*** 
(0.008) 

   Observations 2964 
   Pseudo R-squared 0.17 0.21 0.22 0.16 0.21 0.21 
Initial conditions covariates Yes Yes Yes Yes Yes Yes 
Log av. distance other CZs,  
log distance closest CZ 

Yes Yes Yes Yes Yes Yes 

Log AI pubs in circle -- -- -- Yes Yes Yes 
Change in log ads, IT share,  
log AI pubs, log pop 

-- Yes Yes -- Yes Yes 

Log distance closest large CZ -- -- Yes -- -- Yes 
Log population in hotspot -- -- Yes -- -- -- 
Log population within circle -- -- -- -- -- Yes 

 
Note: Median regressions. The dependent variable in columns 1-3 is the three-year (panel A) or 
seven-year (panel B) change in the cumulative number of AI job advertisements since 2007 
divided by the cumulative number of all job advertisements since 2007, measured in %. The 
dependent variable in columns 4-6 is the three-year (panel A) or seven-year difference (panel B) 
in AI jobs’ share of all job advertisements, measured in %. Data for 2007 and 2010-2019. All 
regressions include year dummies; initial conditions (log number of publications in closest AI 
hotspot, dummies for any pre-2007 AI paper, any pre-2007 AI patent, the number of pre-2007 
papers and its square, and the number of pre-2007 patents, log job advertisements 2007, log 
population 2000, IT share in advertisements 2007); log of average distance to other CZs and log 
distance to the closest CZ. The definition of an AI publication hotspot is a commuting zone 
(CZ) with at least 1000 AI publications by 2006 (31 CZs); the distance to the closest large CZ is 
the distance to the closest of the most populous 31 CZs. Standard errors clustered by commuting 
zone in parentheses.  
*** p<0.01, ** p<0.05, * p<0.1 

  



Table 4: Impacts of distance to closest AI publications hotspot and commuting zone’s own publications on 
change in AI job advertisement share 

 
 (1) (2) 
Log distance to closest hotspot  
(1000+ AI publications) 

-0.016*** 
(0.004) 

-0.031*** 
(0.008) 

Pre-2007 AI paper controls  
(p-value joint significance)  

Yes 
(0.00) 

Yes 
(0.58) 

Pre-2007 AI patent controls  
(p-value joint significance) 

Yes 
(0.19) 

Yes 
(0.00) 

Interactions of pre-2007 AI publications 
with log distance  
(p-value joint significance) 

Yes 
(0.00) 

Yes 
(0.35) 

Observations 5928 2964 
R-squared/ Pseudo R-squared 0.12 0.22 
Effect of distance evaluated at   
  1 AI publication pre-2007 -0.015*** 

(0.003) 
-0.028** 
(0.008) 

  100 AI publications pre-2007 -0.013*** 
(0.003) 

-0.025** 
(0.008) 

  500 AI publications pre-2007 -0.008** 
(0.004) 

-0.013 
(0.011) 

  1000 AI publications pre-2007 -0.002 
(0.006) 

-0.002 
(0.018) 

 
Notes: Median regressions. All regressions are based on the specification of Table 2 columns 
4-6. Standard errors clustered by commuting zone in parentheses. Publications are the sum of 
papers and patents. 
p<0.01, ** p<0.05, * p<0.1 
  



Table 5: Impact of distance from AI hotspot on change in AI job advertisement share by AI type 
     

 All AI Unspecified 
AI only 

Image 
Processing 

Other AI 

 (1) (2) (3) (4) 
A. AI job ads with valid occupation      
     Share AI type in AI job ads (714,348 obs) 100% 37.1% 12.5% 50.3% 
     Share computer scientist/mathematician  
     [obs] 

62.6% 
[714,348] 

68.3% 
[264,852] 

49.9% 
[88,970] 

61.6% 
[360,526] 

B. 3-year differences, median regression (5928 obs)     
    Log distance to closest hotspot 
    (1000+ AI publications) 

-0.013** 
(0.003) 

-0.004*** 
(0.002) 

-0.001 
(0.001) 

-0.006*** 
(0.001) 

       R-squared 0.12 0.16 0.02 0.04 
C. 7-year differences, median regression (2964 obs)     
    Log distance to closest hotspot 
    (1000+ AI publications) 

-0.026** 
(0.007) 

-0.016*** 
(0.003) 

-0.001 
(0.002) 

-0.013** 
(0.004) 

       R-squared 0.22 0.25 0.02 0.09 
 

Notes: Median regression except for column (3) panel A, which is OLS. Each column’s dependent variable is the share of that type of 
AI job advertisement in all job advertisements (in %). An AI job advertisement with unspecified AI requires “Artificial Intelligence” or 
“Machine Learning” skills but no more specific AI skills. An image processing job advertisement mentions image processing among 
the required skills. The types of AI are mutually exclusive. All regressions are based on the specification of Table 2 columns 4-6. 
Standard errors clustered by commuting zone in parentheses. 
*** p<0.01, ** p<0.05, * p<0.1 



Table 6: Impact of distance from AI hotspot on change on AI job advertisement share by occupation 
 

 3-year differences 7-year differences 
 Obs Mean of 

dependent 
variable 

OLS Obs Mean of 
dependent 

variable 

OLS 

 (1) (2) (3) (4) (5) (6) 
All 5928 0.06 -0.015** 

(0.005) 
2964 0.14 -0.034** 

(0.011) 
Computer and mathematical 5894 0.59 -0.133*** 

(0.025) 
2934 1.22 -0.280*** 

(0.053) 
Architectural and engineering 5875 0.18 -0.050** 

(0.017) 
2925 0.36 -0.112** 

(0.045) 
Management 5925 0.07 -0.001 

(0.008) 
2962 0.25 0.021 

(0.023) 
Business and finance 5881 0.07 -0.003 

(0.009) 
2924 0.15 -0.024 

(0.027) 
Sales 5910 0.01 -0.007* 

(0.004) 
2946 0.02 -0.019** 

(0.008) 
Other occupations 5928 0.01 0.005 

(0.006) 
2964 0.02 0.009 

(0.013) 
 
Notes: Each cell in columns 3 and 5 contains the coefficient on log distance to an AI publication hotspot 
(at least 1000 publications) from a different regression based on the specification of Table 2 columns 4-6. 
The dependent variable is the change in the share of advertisements in the specified occupation requiring 
AI. Standard errors clustered by commuting zone in parentheses. 
*** p<0.01, ** p<0.05, * p<0.1 
 
  



Table 7: Impact of distance from AI hotspot on change on AI job advertisement share by industry 
 

 3-year differences 7-year differences 
 Obs Mean of 

dependent 
variable 

OLS Obs Mean of 
dependent 

variable 

OLS 

 (1) (2) (3) (4) (5) (6) 
All 5928 0.061 -0.015** 

(0.005) 
2964 0.136 -0.034** 

(0.011) 
Agriculture, Utilities, Mining, 
Construction, Manufacturing 

5926 0.044 0.010 
(0.007) 

2962 0.084 0.026 
(0.017) 

Wholesale trade, Retail trade, 
Warehousing, transportation 

5928 0.010 0.003 
(0.003) 

2964 0.018 0.007 
(0.008) 

Information 
 

5885 0.104 -0.028 
(0.021) 

2946 0.208 -0.067 
(0.044) 

Finance, Insurance 5925 0.131 -0.024* 
(0.013) 

2961 0.276 -0.065** 
(0.027) 

Real Estate, Professional and 
scientific services, Administration 

5928 0.115 -0.037** 
(0.016) 

2964 0.244 -0.085** 
(0.032) 

Education, Health 5928 0.020 0.013 
(0.014) 

2964 0.048 0.027 
(0.032) 

Arts and recreation, 
Accommodation 

5923 0.028 0.014 
(0.014) 

2961 0.055 0.032 
(0.027) 

Other services,  
Public administration 

5926 -0.038 0.073 
(0.080) 

2962 0.167 0.156 
(0.170) 

Missing industry 5928 0.121 -0.051*** 
(0.007) 

2964 0.249 -0.109*** 
(0.016) 

 
Notes: Each cell in columns 3 and 5 contains the coefficient on log distance to an AI publication hotspot 
(at least 1000 publications) from a different regression based on the specification of Table 2 columns 4-6. 
The dependent variable is the change in the share of advertisements in the specified industry requiring AI. 
The NAICS 2 codes for each row are a) 11, 21-23, 31-33; b) 42, 44-45, 48-49; c) 51; d) 52; e) 53-56; f) 61-
62; g) 71-72; h) 81, 92. Standard errors clustered by commuting zone in parentheses. 
*** p<0.01, ** p<0.05, * p<0.1 
 
 
 
 
  



Appendix Table 1: Skills used to designate a job advertisement as requiring Artificial Intelligence, by type 
 
A. Unspecified 

Artificial intelligence and/or Machine learning only 
B. Image processing 

Image processing 
C. Other 

AI ChatBot, Amelia, ANTLR, Automatic Speech Recognition (ASR), Caffe Deep Learning 
Framework, Chatbot, Computational Linguistics, Computer Vision, Decision Trees, Deep Learning, 
Deeplearning4j, Google Cloud Machine Learning Platform, Gradient boosting, H2O (software), IBM 
Watson, Image Recognition, IPSoft, Ithink, Keras, Latent Dirichlet Allocation, Latent Semantic 
Analysis, Lexalytics, Lexical Acquisition, Lexical Semantics, Libsvm, Machine Translation (MT), 
Machine Vision, MLPACK (C++ library), MoSes, MXNet, Madlib, Mahout, Microsoft Cognitive 
Tookit, Mlpy, ND4J (software), Natural Language Processing, Natural Language Toolkit (NLTK), 
Nearest Neighbor Algorithm, Neural Networks, Object Recognition, Object Tracking, OpenCV, 
OpenNLP, Pattern Recognition, Pybrain, Random Forests, Recommender Systems, Sentiment 
Analysis / Opinion Mining, Semantic Driven Subtractive Clustering, Semi-Supervised Learning, 
Sentiment Classification, Speech Recognition, Supervised Learning (Machine Learning), Support 
Vector Machines (SVM), TensorFlow, Text Mining, Text to Speech (TTS), Tokenization, Torch 
(Machine Learning), Unsupervised Learning, Virtual Agents, Vowpal, Wabbit, Word2Vec, Xgboost 

 
Skills designated as AI by Alekseeva et al. (2021). 
  



Appendix Table 2: Summary statistics from Burning Glass micro-data job advertisements  
 

 Share 
(%) 

AI required? 
(%) 

Sample of ads requiring AI: Occupation (%) 

Computer  
and math 

Management 
 

Architects 
engineers 

Business 
finance 

Industry (1) (2) (3) (4) (5) (6) 
All 100.0 0.37 62.6 10.6 6.4 4.8 
   Agriculture, Utilities, Mining, 
   Construction, Manufacturing 

9.0 0.41 59.8 9.5 16.3 3.0 

   Wholesale trade, Retail trade, 
   Warehousing, transportation 

12.3 0.16 65.6 12.3 4.9 4.4 

   Information 3.0 1.10 70.1 13.1 5.4 3.5 
   Finance, Insurance 7.6 0.54 59.4 15.5 2.7 12.1 
   Real Estate, Professional, technical and 
   scientific services, Administration 

17.9 0.68 67.4 9.9 6.3 5.2 

   Education, Health 22.7 0.16 29.7 9.5 2.9 1.9 
   Arts and recreation, Accommodation 6.9 0.11 56.4 11.9 2.8 3.4 
   Other services,  
   Public administration 

4.5 0.22 50.7 16.4 7.6 3.4 

   Missing industry 16.0 0.38 74.2 6.1 6.9 3.0 
 

Notes: 2007-2019. 204,553,172 observations in columns 1-3; 714,348 observations in columns 3-6 (means for occupations are 
calculated based on advertisements requiring AI and with a valid occupation only). The NAICS 2 codes for each row are a) 11, 21-23, 
31-33; b) 42, 44-45, 48-49; c) 51; d) 52; e) 53-56; f) 61-62; g) 71-72; h) 81, 92.
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